14 Orthogonal Projection

Orthogonal Projection For v € V, let v =
m + n, where m € M and n € M+,

e m is called the orthogonal projection of v

onto M.

e The projector Py onto M along M~ is called
the orthogonal projector onto M.

e Py, is the unique linear operator such that
Pyv=m.

2. For A € Mat,,x, such that rank(A) = r,
describe the orthogonal projectors onto each of the
four fundamental subspaces of A.

Constructing Orthogonal Projectors Let M
be an r-dimensional subspace of R™, and let the
columns of M,,«, and N, xn—r be bases for M and
M, respectively. The orthogonal projectors onto

M and M+ are

e Pyy=M(MTM)*M" and
PyL=N(NTN)INT.

If M and N contain orthonormal bases for M and
ML, then

e Pvy=MM" and Py = NN-.

° PM:U<IT(;<T

g) UT, where U = (M|N).

o Py =1— Py in all cases.

Closest Point Theorem Let M be a subspace
of an inner-product space V, and let b be a vector
in V. The unique vector in M that is closest to b
is p = Pub, the orthogonal projection of b onto
M. In other words,

in [|b— = ||b — Pupb||2 = dist(b .
min [[b—mll2 = [b— Pagbllz = dist(b, M)

This is called the orthogonal distance between b

and M.

Matrix 2-norm??2

Orthogonal Projectors Suppose that P €
Mat,,»n(R) is a projector - i.e., P2 = P. The fol-
lowing statements are equivalent to saying that P
is an orthogonal projector.

o im(P) Lker(P).

e PT = P ((i.e., orthogonal projector < P? =
P=P").

e ||P||2 =1 for the matrix 2-norm.

1. Let uw € R™, u # 0 and consider the line
L = span{u}. Construct the orthogonal projector
onto £, and then determine the orthogonal
projection of a vector @ € R™ onto L.

12The matrix norm induced by the euclidean vector norm is

3. Find the orthogonal projection of b onto
M = span{u}, and then determine the orthogonal
projection of b onto M+, where b = (4,8) " and
u=(3,1)T.
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4. Let A=12 4 1|andb=[1]. (a)
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Compute the orthogonal projectors onto each of the
four fundamental subspaces associated with A. (b)
Find the point in ker(A)* that is closest to b.

9. For an orthogonal projector P, prove that
|Px||2 = ||z]]2 if and only if z € im(P).

6. Explain why ATPim(A) = A" for all
A € Mat,xn.

7. Explain why Py = >7_; u;u;] whenever
B = {u1,us,...,u,} is an orthonormal basis for
M CR".

8. Explain how to use orthogonal reduction
techniques to compute the orthogonal projectors
onto each of the four fundamental subspaces of a
matrix A € Mat,,xn.

9. Describe all 2 x 2 projectors in Mataya(R).

10. The line £ in R™ passing through two distinct
points w and v is £ = u + span{u — v} . If u # 0
and v = au, then £ is a line not passing through the
origin - i.e., L is not a subspace. Sketch a picture in
R? or R? to visualize this, and then explain how to
project a vector b orthogonally onto L.

||A||2 = Hnﬁaxl HAmHQ =V )\maxa
T|2—

where Amqz is the largest number A such that A*A — AT is singular. In case when A is nonsingular,

A7 |2 =

1

min{[[Az[2 : [zll2 =1} VAmin’

where Apin is the smallest number A such that A*A — AI is singular. If you are already familiar with eigenvalues, these say
that Anaez and Amin are the largest and smallest eigenvalues of A* A.
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Classical Least Squares'

Least Squares Solutions Each of the following
four statements is equivalent to saying that T is
a least squares solution for a possibly inconsistent
linear system Ax = b.

e [|AZ — b| = min || Az — b||2
HSIING
o AT = Py, a)b.

e ATAZ=ATb
(A*Az = A*b where A € Mat,xn(C)).

o T € A*b+ ker(A)
(A*b is the minimal 2-norm LSS).

Caution! These are valuable theoretical charac-
terizations, but none is recommended for floating-
point computation. Directly solving second of third
from above or explicitly computing A* can be in-
efficient and numerically unstable.

11. Let P, denote a vector space of all polynomial
of degree < 2, Py = {ax? + bx + c|a,b,c € R}.

(a) Check is it

(p,q) = p(1)q(1) + 2p(0)q(0) + p(—1)q(—1)
inner product for Po.

(b) For subspace £ C Py generated by pi(z) =1
and po(z) = x find an orthogonal complement.

(c¢) Find the orthogonal projection of
p(z) =222 +x+2o0n L.

12. In inner product space R*, with standard
inner product, let M denote subspace spanned by
vectors (2,1,0,0)" and (1,1,1,1)T. Find a basis for
orthogonal complement of M and find the
orthogonal projection of @ = (3, —4,5,—5)" onto

M.

13. Let M = span{a, b} denote subspace of inner
product space R" (with standard inner product)
spaned by vectors a = (0,1,2,...,n — 1)T and
b=(1,1,1,...,1)". Find orthogonal complement
M-+ and find the orthogonal projection of z onto
M where

-~

14. Find the orthogonal projection of
x = (—12,-13,5,2)" onto M if we have that

1

-
1
2n(3 —n), §n(n —1),0,0, ...,0) € R".

1 2
2| [-3 s
= C
M = span 5 [] o R
-3 4

(with respect to standard inner product).

15. In inner product space
Ps = {at3 +bt? +ct +d|a,b,c,d € R} of all
polynomials of degree < 3 with an inner product

1
[
let M = span{t, 1+ t} be a given subspace. Find

the orthogonal projection of
r(t) = —5t3 — 12¢% + 6t + 6 onto M.

(p,q) p(t)q(t)dt

16. Space £ is defined as set of solutions for the
following system

2x1 + T9 + 3+ 3x4=0
3r1 + 220+ 223 + z4=0
1+ 2x9 4+ 23— 9x4=0.

Find the orthogonal projection of
x=(7,—4,-1,2)7 onto £ in R*.

13The following problem arises in almost all areas where mathematics is applied. At discrete points ¢; (often points in time),
observations b; of some phenomenon are made, and the results are recorded as a set of ordered pairs

D ={(t1,b1), (t2,b2), ... (tm, bm)}.

On the basis of these observations, the problem is to make estimations or predictions at points (times) % that are between or
beyond the observation points ¢;. A standard approach is to find the equation of a curve y = f(t) that closely fits the points in
D so that the phenomenon can be estimated at any nonobservation point ¢ with the value §y = f(t).

General Least Squares Problem is the following. For
least squares problem is to find a vector  that minimizes the

A € Maty,xn(R) and b € R™, let € = e(x) = Az — b. The general
quantity

Y el=c'e=(Az—b)  (Az - b).
=1

Any vector that provides a minimum value for this expression

is called a least squares solution.

e The set of all least squares solutions is precisely the set of solutions to the system of normal equations AT Ax = A" b.

e There is a unique least squares solution if and only if rank(A) = n, in which case it is given by & = (AT A)"'ATb.

e If Ax = b is consistent, then the solution set for Ax =

b is the same as the set of least squares solutions.
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