14 Orthogonal Projection

Orthogonal Projection For $\boldsymbol{v} \in \mathcal{V}$, let $\boldsymbol{v}=$ $\boldsymbol{m}+\boldsymbol{n}$, where $\boldsymbol{m} \in \mathcal{M}$ and $\boldsymbol{n} \in \mathcal{M}^{\perp}$.

- \boldsymbol{m} is called the orthogonal projection of \boldsymbol{v} onto \mathcal{M}.
- The projector $P_{\mathcal{M}}$ onto \mathcal{M} along M^{\perp} is called the orthogonal projector onto \mathcal{M}.
- $P_{\mathcal{M}}$ is the unique linear operator such that $P_{\mathcal{M}} \boldsymbol{v}=\boldsymbol{m}$.

Constructing Orthogonal Projectors Let \mathcal{M}

 be an r-dimensional subspace of \mathbb{R}^{n}, and let the columns of $M_{n \times r}$ and $N_{n \times n-r}$ be bases for \mathcal{M} and M^{\perp}, respectively. The orthogonal projectors onto \mathcal{M} and \mathcal{M}^{\perp} are- $P_{\mathcal{M}}=M\left(M^{\top} M\right)^{-1} M^{\top}$ and $P_{\mathcal{M}^{\perp}}=N\left(N^{\top} N\right)^{-1} N^{\top}$.

If \mathcal{M} and \mathcal{N} contain orthonormal bases for \mathcal{M} and \mathcal{M}^{\perp}, then

- $P_{\mathcal{M}}=M M^{\top}$ and $P_{\mathcal{M}^{\perp}}=N N^{\perp}$.
- $P_{\mathcal{M}}=U\left(\begin{array}{cc}I_{r \times r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right) U^{\top}$, where $U=(M \mid N)$.
- $P_{\mathcal{M}^{\perp}}=I-P_{\mathcal{M}}$ in all cases.

Matrix 2-norm ${ }^{12}$
Orthogonal Projectors Suppose that $P \in$ $\overline{\operatorname{Mat}}_{n \times n}(\mathbb{R})$ is a projector - i.e., $P^{2}=P$. The following statements are equivalent to saying that P is an orthogonal projector.

- $\operatorname{im}(P) \perp \operatorname{ker}(P)$.
- $P^{\top}=P$ ((i.e., orthogonal projector $\Leftrightarrow P^{2}=$ $\left.P=P^{\top}\right)$.
- $\|P\|_{2}=1$ for the matrix 2-norm.

1. Let $\boldsymbol{u} \in \mathbb{R}^{n}, \boldsymbol{u} \neq \mathbf{0}$ and consider the line $\mathcal{L}=\operatorname{span}\{\boldsymbol{u}\}$. Construct the orthogonal projector onto \mathcal{L}, and then determine the orthogonal projection of a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ onto \mathcal{L}.
2. For $A \in \operatorname{Mat}_{m \times n}$ such that $\operatorname{rank}(A)=r$, describe the orthogonal projectors onto each of the four fundamental subspaces of A.

Closest Point Theorem Let \mathcal{M} be a subspace of an inner-product space \mathcal{V}, and let \boldsymbol{b} be a vector in \mathcal{V}. The unique vector in \mathcal{M} that is closest to \boldsymbol{b} is $\boldsymbol{p}=P_{\mathcal{M}} \boldsymbol{b}$, the orthogonal projection of \boldsymbol{b} onto \mathcal{M}. In other words,

$$
\min _{m \in \mathcal{M}}\|\boldsymbol{b}-\boldsymbol{m}\|_{2}=\left\|\boldsymbol{b}-P_{\mathcal{M}} \boldsymbol{b}\right\|_{2}=\operatorname{dist}(\boldsymbol{b}, \mathcal{M}) .
$$

This is called the orthogonal distance between \boldsymbol{b} and \mathcal{M}.
3. Find the orthogonal projection of \boldsymbol{b} onto $\mathcal{M}=\operatorname{span}\{u\}$, and then determine the orthogonal projection of \boldsymbol{b} onto M^{\perp}, where $\boldsymbol{b}=(4,8)^{\top}$ and $\boldsymbol{u}=(3,1)^{\top}$.
4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 2 & 0\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

Compute the orthogonal projectors onto each of the four fundamental subspaces associated with A. (b) Find the point in $\operatorname{ker}(A)^{\perp}$ that is closest to \boldsymbol{b}.
5. For an orthogonal projector P, prove that $\|P x\|_{2}=\|x\|_{2}$ if and only if $x \in \operatorname{im}(P)$.
6. Explain why $A^{\top} P_{\mathrm{im}(A)}=A^{\top}$ for all
$A \in$ Mat $_{m \times n}$.
7. Explain why $P_{\mathcal{M}}=\sum_{i=1}^{r} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$ whenever $\mathcal{B}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{r}\right\}$ is an orthonormal basis for $\mathcal{M} \subseteq \mathbb{R}^{n}$.
8. Explain how to use orthogonal reduction techniques to compute the orthogonal projectors onto each of the four fundamental subspaces of a matrix $A \in \mathrm{Mat}_{m \times n}$.
9. Describe all 2×2 projectors in $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$.
10. The line \mathcal{L} in \mathbb{R}^{n} passing through two distinct points \boldsymbol{u} and \boldsymbol{v} is $\mathcal{L}=\boldsymbol{u}+\operatorname{span}\{\boldsymbol{u}-\boldsymbol{v}\}$. If $\boldsymbol{u} \neq \mathbf{0}$ and $\boldsymbol{v}=\alpha \boldsymbol{u}$, then \mathcal{L} is a line not passing through the origin - i.e., \mathcal{L} is not a subspace. Sketch a picture in \mathbb{R}^{2} or \mathbb{R}^{3} to visualize this, and then explain how to project a vector \boldsymbol{b} orthogonally onto \mathcal{L}.

[^0]where $\lambda_{\max }$ is the largest number λ such that $A^{*} A-\lambda I$ is singular. In case when A is nonsingular,
$$
\left\|A^{-1}\right\|_{2}=\frac{1}{\min \left\{\|A \boldsymbol{x}\|_{2}:\|x\|_{2}=1\right\}}=\frac{1}{\sqrt{\lambda_{\min }}}
$$
where $\lambda_{\min }$ is the smallest number λ such that $A^{*} A-\lambda I$ is singular. If you are already familiar with eigenvalues, these say that $\lambda_{\max }$ and $\lambda_{\min }$ are the largest and smallest eigenvalues of $A^{*} A$.

Classical Least Squares ${ }^{13}$

Least Squares Solutions Each of the following four statements is equivalent to saying that \widehat{x} is a least squares solution for a possibly inconsistent linear system $A \boldsymbol{x}=\boldsymbol{b}$.

- $\|A \widehat{\boldsymbol{x}}-\boldsymbol{b}\|=\min _{x \in \mathbb{R}^{n}}\|A \boldsymbol{x}-\boldsymbol{b}\|_{2}$
- $A \widehat{\boldsymbol{x}}=P_{\mathrm{im}(A)} \boldsymbol{b}$.
- $A^{\top} A \widehat{\boldsymbol{x}}=A^{\top} \boldsymbol{b}$
$\left(A^{*} A \widehat{x}=A^{*} \boldsymbol{b}\right.$ where $\left.A \in \operatorname{Mat}_{m \times n}(\mathbb{C})\right)$.
- $\widehat{x} \in A^{\star} \boldsymbol{b}+\operatorname{ker}(A)$
($A^{\star} \boldsymbol{b}$ is the minimal 2-norm LSS).
Caution! These are valuable theoretical characterizations, but none is recommended for floatingpoint computation. Directly solving second of third from above or explicitly computing A^{\star} can be inefficient and numerically unstable.

11. Let \mathcal{P}_{2} denote a vector space of all polynomial of degree $\leq 2, \mathcal{P}_{2}=\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}$.
(a) Check is it
$\langle p, q\rangle=p(1) q(1)+2 p(0) q(0)+p(-1) q(-1)$
inner product for \mathcal{P}_{2}.
(b) For subspace $\mathcal{L} \subseteq \mathcal{P}_{2}$ generated by $p_{1}(x)=1$ and $p_{2}(x)=x$ find an orthogonal complement.
(c) Find the orthogonal projection of $p(x)=-2 x^{2}+x+2$ on \mathcal{L}.
12. In inner product space \mathbb{R}^{4}, with standard inner product, let \mathcal{M} denote subspace spanned by vectors $(2,1,0,0)^{\top}$ and $(1,1,1,1)^{\top}$. Find a basis for orthogonal complement of \mathcal{M} and find the orthogonal projection of $\boldsymbol{a}=(3,-4,5,-5)^{\top}$ onto \mathcal{M}.
13. Let $\mathcal{M}=\operatorname{span}\{\boldsymbol{a}, \boldsymbol{b}\}$ denote subspace of inner product space \mathbb{R}^{n} (with standard inner product) spaned by vectors $\boldsymbol{a}=(0,1,2, \ldots, n-1)^{\top}$ and $\boldsymbol{b}=(1,1,1, \ldots, 1)^{\top}$. Find orthogonal complement \mathcal{M}^{\perp} and find the orthogonal projection of \boldsymbol{z} onto \mathcal{M} where

$$
\boldsymbol{z}=\left(\frac{1}{2} n(3-n), \frac{1}{2} n(n-1), 0,0, \ldots, 0\right)^{\top} \in \mathbb{R}^{n} .
$$

14. Find the orthogonal projection of $\boldsymbol{x}=(-12,-13,5,2)^{\top}$ onto \mathcal{M} if we have that

$$
\mathcal{M}=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-2 \\
2 \\
-3
\end{array}\right),\left(\begin{array}{c}
2 \\
-3 \\
2 \\
4
\end{array}\right)\right\} \subseteq \mathbb{R}^{4}
$$

(with respect to standard inner product).
15. In inner product space
$\mathcal{P}_{3}=\left\{a t^{3}+b t^{2}+c t+d \mid a, b, c, d \in \mathbb{R}\right\}$ of all polynomials of degree ≤ 3 with an inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) \mathrm{d} t
$$

let $\mathcal{M}=\operatorname{span}\{t, 1+t\}$ be a given subspace. Find the orthogonal projection of $r(t)=-5 t^{3}-12 t^{2}+6 t+6$ onto \mathcal{M}.
16. Space \mathcal{L} is defined as set of solutions for the following system

$$
\begin{array}{rlr}
2 x_{1}+ & x_{2}+x_{3}+3 x_{4} & =0 \\
3 x_{1}+2 x_{2}+2 x_{3}+ & x_{4} & =0 \\
x_{1}+ & 2 x_{2}+2 x_{3}-\quad 9 x_{4} & =0
\end{array}
$$

Find the orthogonal projection of $x=(7,-4,-1,2)^{\top}$ onto \mathcal{L} in \mathbb{R}^{4}.

[^1]
[^0]: ${ }^{12}$ The matrix norm induced by the euclidean vector norm is

 $$
 \|A\|_{2}=\max _{\|x\|_{2}=1}\|A \boldsymbol{x}\|_{2}=\sqrt{\lambda_{\max }}
 $$

[^1]: ${ }^{13}$ The following problem arises in almost all areas where mathematics is applied. At discrete points t_{i} (often points in time), observations b_{i} of some phenomenon are made, and the results are recorded as a set of ordered pairs

 $$
 \mathcal{D}=\left\{\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{m}, b_{m}\right)\right\}
 $$

 On the basis of these observations, the problem is to make estimations or predictions at points (times) \widehat{t} that are between or beyond the observation points t_{i}. A standard approach is to find the equation of a curve $y=f(t)$ that closely fits the points in \mathcal{D} so that the phenomenon can be estimated at any nonobservation point \widehat{t} with the value $\widehat{y}=f(\widehat{t})$.

 General Least Squares Problem is the following. For $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $b \in \mathbb{R}^{m}$, let $\varepsilon=\varepsilon(x)=A \boldsymbol{x}-\boldsymbol{b}$. The general least squares problem is to find a vector \boldsymbol{x} that minimizes the quantity

 $$
 \sum_{i=1}^{m} \varepsilon_{i}^{2}=\varepsilon^{\top} \varepsilon=(A \boldsymbol{x}-\boldsymbol{b})^{\top}(A \boldsymbol{x}-\boldsymbol{b})
 $$

 Any vector that provides a minimum value for this expression is called a least squares solution.

 - The set of all least squares solutions is precisely the set of solutions to the system of normal equations $A^{\top} A \boldsymbol{x}=A^{\top} \boldsymbol{b}$.
 - There is a unique least squares solution if and only if $\operatorname{rank}(A)=n$, in which case it is given by $\boldsymbol{x}=\left(A^{\top} A\right)^{-1} A^{\top} \boldsymbol{b}$.
 - If $\boldsymbol{A x}=\boldsymbol{b}$ is consistent, then the solution set for $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is the same as the set of least squares solutions.

