14 Orthogonal Projection

- m is called the <u>orthogonal projection</u> of vonto \mathcal{M} .
- The projector $P_{\mathcal{M}}$ onto \mathcal{M} along M^{\perp} is called the *orthogonal projector* onto \mathcal{M} .
- $P_{\mathcal{M}}$ is the unique linear operator such that $P_{\mathcal{M}} \boldsymbol{v} = \boldsymbol{m}.$

Constructing Orthogonal Projectors Let \mathcal{M} be an *r*-dimensional subspace of \mathbb{R}^n , and let the columns of $M_{n \times r}$ and $N_{n \times n-r}$ be bases for \mathcal{M} and M^{\perp} , respectively. The orthogonal projectors onto \mathcal{M} and \mathcal{M}^{\perp} are

•
$$P_{\mathcal{M}} = M(M^{\top}M)^{-1}M^{\top}$$
 and
 $P_{\mathcal{M}^{\perp}} = N(N^{\top}N)^{-1}N^{\top}.$

If \mathcal{M} and \mathcal{N} contain orthonormal bases for \mathcal{M} and \mathcal{M}^{\perp} , then

•
$$P_{\mathcal{M}} = MM^{\top}$$
 and $P_{\mathcal{M}^{\perp}} = NN^{\perp}$.
• $P_{\mathcal{M}} = U \begin{pmatrix} I_{r \times r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} U^{\top}$, where $U = (M|N)$

•
$$P_{\mathcal{M}^{\perp}} = I - P_{\mathcal{M}}$$
 in all cases.

Matrix 2-norm¹²

Orthogonal Projectors Suppose that $P \in \overline{\operatorname{Mat}_{n \times n}(\mathbb{R})}$ is a projector - i.e., $P^2 = P$. The following statements are equivalent to saying that P is an *orthogonal* projector.

- $\operatorname{im}(P) \perp \operatorname{ker}(P)$.
- $P^{\top} = P$ ((i.e., orthogonal projector $\Leftrightarrow P^2 = P = P^{\top}$).
- $||P||_2 = 1$ for the matrix 2-norm.

1. Let $u \in \mathbb{R}^n$, $u \neq 0$ and consider the line $\mathcal{L} = \operatorname{span}\{u\}$. Construct the orthogonal projector onto \mathcal{L} , and then determine the orthogonal projection of a vector $x \in \mathbb{R}^n$ onto \mathcal{L} .

$$||A||_2 = \max_{||\boldsymbol{x}||_2=1} ||A\boldsymbol{x}||_2 = \sqrt{\lambda_{max}},$$

where λ_{max} is the largest number λ such that $A^*A - \lambda I$ is singular. In case when A is nonsingular,

$$||A^{-1}||_2 = \frac{1}{\min\{||A\boldsymbol{x}||_2 : ||x||_2 = 1\}} = \frac{1}{\sqrt{\lambda_{min}}}$$

where λ_{min} is the smallest number λ such that $A^*A - \lambda I$ is singular. If you are already familiar with eigenvalues, these say that λ_{max} and λ_{min} are the largest and smallest eigenvalues of A^*A .

2. For $A \in \operatorname{Mat}_{m \times n}$ such that $\operatorname{rank}(A) = r$, describe the orthogonal projectors onto each of the four fundamental subspaces of A.

<u>Closest Point Theorem</u> Let \mathcal{M} be a subspace of an inner-product space \mathcal{V} , and let \boldsymbol{b} be a vector in \mathcal{V} . The unique vector in \mathcal{M} that is closest to \boldsymbol{b} is $\boldsymbol{p} = P_{\mathcal{M}}\boldsymbol{b}$, the orthogonal projection of \boldsymbol{b} onto \mathcal{M} . In other words,

$$\min_{\boldsymbol{m}\in\mathcal{M}} \|\boldsymbol{b}-\boldsymbol{m}\|_2 = \|\boldsymbol{b}-P_{\mathcal{M}}\boldsymbol{b}\|_2 = \operatorname{dist}(\boldsymbol{b},\mathcal{M}).$$

This is called the <u>orthogonal distance</u> between \boldsymbol{b} and \mathcal{M} .

3. Find the orthogonal projection of **b** onto $\mathcal{M} = \operatorname{span}\{u\}$, and then determine the orthogonal projection of **b** onto \mathcal{M}^{\perp} , where $\mathbf{b} = (4, 8)^{\top}$ and $\mathbf{u} = (3, 1)^{\top}$.

4. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. (a)

Compute the orthogonal projectors onto each of the four fundamental subspaces associated with A. (b) Find the point in ker $(A)^{\perp}$ that is closest to **b**.

5. For an orthogonal projector P, prove that $||Px||_2 = ||x||_2$ if and only if $x \in im(P)$.

6. Explain why $A^{\top}P_{\mathrm{im}(A)} = A^{\top}$ for all $A \in \mathrm{Mat}_{m \times n}$.

7. Explain why $P_{\mathcal{M}} = \sum_{i=1}^{r} u_i u_i^{\top}$ whenever $\mathcal{B} = \{u_1, u_2, ..., u_r\}$ is an orthonormal basis for $\mathcal{M} \subseteq \mathbb{R}^n$.

8. Explain how to use orthogonal reduction techniques to compute the orthogonal projectors onto each of the four fundamental subspaces of a matrix $A \in \operatorname{Mat}_{m \times n}$.

9. Describe all 2×2 projectors in $Mat_{2\times 2}(\mathbb{R})$.

10. The line \mathcal{L} in \mathbb{R}^n passing through two distinct points u and v is $\mathcal{L} = u + \operatorname{span}\{u - v\}$. If $u \neq 0$ and $v = \alpha u$, then \mathcal{L} is a line not passing through the origin - i.e., \mathcal{L} is not a subspace. Sketch a picture in \mathbb{R}^2 or \mathbb{R}^3 to visualize this, and then explain how to project a vector b orthogonally onto \mathcal{L} .

¹²The matrix norm induced by the euclidean vector norm is

Classical Least Squares¹³

Least Squares Solutions Each of the following four statements is equivalent to saying that \hat{x} is a least squares solution for a possibly inconsistent linear system Ax = b.

•
$$||A\widehat{\boldsymbol{x}} - \boldsymbol{b}|| = \min_{\boldsymbol{x} \in \mathbb{R}^n} ||A\boldsymbol{x} - \boldsymbol{b}||_2$$

- $A\widehat{\boldsymbol{x}} = P_{\mathrm{im}(A)}\boldsymbol{b}.$
- $A^{\top}A\widehat{\boldsymbol{x}} = A^{\top}\boldsymbol{b}$ $(A^*A\widehat{\boldsymbol{x}} = A^*\boldsymbol{b} \text{ where } A \in \operatorname{Mat}_{m \times n}(\mathbb{C})).$
- $\widehat{x} \in A^* \boldsymbol{b} + \ker(A)$ ($A^* \boldsymbol{b}$ is the minimal 2-norm LSS).

Caution! These are valuable theoretical characterizations, but none is recommended for floatingpoint computation. Directly solving second of third from above or explicitly computing A^* can be inefficient and numerically unstable.

11. Let \mathcal{P}_2 denote a vector space of all polynomial of degree ≤ 2 , $\mathcal{P}_2 = \{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}.$

- (a) Check is it $\langle p,q\rangle = p(1)q(1) + 2p(0)q(0) + p(-1)q(-1)$ inner product for \mathcal{P}_2 .
- (b) For subspace $\mathcal{L} \subseteq \mathcal{P}_2$ generated by $p_1(x) = 1$ and $p_2(x) = x$ find an orthogonal complement.
- (c) Find the orthogonal projection of $p(x) = -2x^2 + x + 2$ on \mathcal{L} .

12. In inner product space \mathbb{R}^4 , with standard inner product, let \mathcal{M} denote subspace spanned by vectors $(2, 1, 0, 0)^{\top}$ and $(1, 1, 1, 1)^{\top}$. Find a basis for orthogonal complement of \mathcal{M} and find the orthogonal projection of $\boldsymbol{a} = (3, -4, 5, -5)^{\top}$ onto \mathcal{M} .

13. Let $\mathcal{M} = \operatorname{span}\{a, b\}$ denote subspace of inner product space \mathbb{R}^n (with standard inner product) spaned by vectors $\boldsymbol{a} = (0, 1, 2, ..., n - 1)^\top$ and $\boldsymbol{b} = (1, 1, 1, ..., 1)^\top$. Find orthogonal complement \mathcal{M}^\perp and find the orthogonal projection of \boldsymbol{z} onto \mathcal{M} where

$$\boldsymbol{z} = \left(\frac{1}{2}n(3-n), \frac{1}{2}n(n-1), 0, 0, ..., 0\right)^{\top} \in \mathbb{R}^{n}.$$

14. Find the orthogonal projection of $\boldsymbol{x} = (-12, -13, 5, 2)^{\top}$ onto \mathcal{M} if we have that

$$\mathcal{M} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -2 \\ 2 \\ -3 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 2 \\ 4 \end{pmatrix} \right\} \subseteq \mathbb{R}^4$$

(with respect to standard inner product).

15. In inner product space

 $\mathcal{P}_3 = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}\}$ of all polynomials of degree ≤ 3 with an inner product

$$\langle p,q \rangle = \int_{-1}^{1} p(t)q(t) \,\mathrm{d}t$$

let $\mathcal{M} = \operatorname{span}\{t, 1+t\}$ be a given subspace. Find the orthogonal projection of

 $r(t) = -5t^3 - 12t^2 + 6t + 6$ onto \mathcal{M} .

16. Space \mathcal{L} is defined as set of solutions for the following system

Find the orthogonal projection of $x = (7, -4, -1, 2)^{\top}$ onto \mathcal{L} in \mathbb{R}^4 .

$$\mathcal{D} = \{(t_1, b_1), (t_2, b_2), ..., (t_m, b_m)\}$$

On the basis of these observations, the problem is to make estimations or predictions at points (times) \hat{t} that are between or beyond the observation points t_i . A standard approach is to find the equation of a curve y = f(t) that closely fits the points in \mathcal{D} so that the phenomenon can be estimated at any nonobservation point \hat{t} with the value $\hat{y} = f(\hat{t})$.

General Least Squares Problem is the following. For $A \in Mat_{m \times n}(\mathbb{R})$ and $b \in \mathbb{R}^m$, let $\varepsilon = \varepsilon(x) = A\mathbf{x} - \mathbf{b}$. The general least squares problem is to find a vector \mathbf{x} that minimizes the quantity

$$\sum_{i=1}^{m} \varepsilon_i^2 = \varepsilon^{\top} \varepsilon = (A\boldsymbol{x} - \boldsymbol{b})^{\top} (A\boldsymbol{x} - \boldsymbol{b})$$

Any vector that provides a minimum value for this expression is called a least squares solution.

- The set of all least squares solutions is precisely the set of solutions to the system of normal equations $A^{\top}Ax = A^{\top}b$.
- There is a unique least squares solution if and only if $\operatorname{rank}(A) = n$, in which case it is given by $\boldsymbol{x} = (A^{\top}A)^{-1}A^{\top}\boldsymbol{b}$.
- If $A\mathbf{x} = \mathbf{b}$ is consistent, then the solution set for $A\mathbf{x} = \mathbf{b}$ is the same as the set of least squares solutions.

¹³The following problem arises in almost all areas where mathematics is applied. At discrete points t_i (often points in time), observations b_i of some phenomenon are made, and the results are recorded as a set of ordered pairs