
14 Orthogonal Projection

Orthogonal Projection For v ∈ V, let v =

m + n, where m ∈M and n ∈M⊥.

• m is called the orthogonal projection of v
onto M.

• The projector PM ontoM alongM⊥ is called
the orthogonal projector onto M.

• PM is the unique linear operator such that
PMv = m.

Constructing Orthogonal Projectors Let M
be an r-dimensional subspace of Rn, and let the
columns of Mn×r and Nn×n−r be bases forM and
M⊥, respectively. The orthogonal projectors onto
M and M⊥ are

• PM = M(M>M)−1M> and
PM⊥ = N(N>N)−1N>.

IfM and N contain orthonormal bases forM and
M⊥, then

• PM = MM> and PM⊥ = NN⊥.

• PM = U

(
Ir×r 0
0 0

)
U>, where U = (M |N).

• PM⊥ = I − PM in all cases.

Matrix 2-norm12

Orthogonal Projectors Suppose that P ∈
Matn×n(R) is a projector - i.e., P 2 = P . The fol-
lowing statements are equivalent to saying that P
is an orthogonal projector.

• im(P )⊥ker(P ).

• P> = P ((i.e., orthogonal projector ⇔ P 2 =
P = P>).

• ‖P‖2 = 1 for the matrix 2-norm.

1. Let u ∈ Rn, u 6= 0 and consider the line
L = span{u}. Construct the orthogonal projector
onto L, and then determine the orthogonal
projection of a vector x ∈ Rn onto L.

2. For A ∈ Matm×n such that rank(A) = r,
describe the orthogonal projectors onto each of the
four fundamental subspaces of A.

Closest Point Theorem Let M be a subspace
of an inner-product space V, and let b be a vector
in V. The unique vector in M that is closest to b
is p = PMb, the orthogonal projection of b onto
M. In other words,

min
m∈M

‖b−m‖2 = ‖b− PMb‖2 = dist(b,M).

This is called the orthogonal distance between b
and M.

3. Find the orthogonal projection of b onto
M = span{u}, and then determine the orthogonal
projection of b onto M⊥, where b = (4, 8)> and
u = (3, 1)>.

4. Let A =

1 2 0
2 4 1
1 2 0

 and b =

1
1
1

. (a)

Compute the orthogonal projectors onto each of the
four fundamental subspaces associated with A. (b)
Find the point in ker(A)⊥ that is closest to b.

5. For an orthogonal projector P , prove that
‖Px‖2 = ‖x‖2 if and only if x ∈ im(P ).

6. Explain why A>Pim(A) = A> for all
A ∈ Matm×n.

7. Explain why PM =
∑r

i=1 uiu
>
i whenever

B = {u1,u2, ...,ur} is an orthonormal basis for
M⊆ Rn.

8. Explain how to use orthogonal reduction
techniques to compute the orthogonal projectors
onto each of the four fundamental subspaces of a
matrix A ∈ Matm×n.

9. Describe all 2× 2 projectors in Mat2×2(R).

10. The line L in Rn passing through two distinct
points u and v is L = u + span{u− v} . If u 6= 0
and v = αu, then L is a line not passing through the
origin - i.e., L is not a subspace. Sketch a picture in
R2 or R3 to visualize this, and then explain how to
project a vector b orthogonally onto L.

12The matrix norm induced by the euclidean vector norm is

‖A‖2 = max
‖x‖2=1

‖Ax‖2 =
√
λmax,

where λmax is the largest number λ such that A∗A− λI is singular. In case when A is nonsingular,

‖A−1‖2 =
1

min{‖Ax‖2 : ‖x‖2 = 1} =
1√
λmin

,

where λmin is the smallest number λ such that A∗A − λI is singular. If you are already familiar with eigenvalues, these say
that λmax and λmin are the largest and smallest eigenvalues of A∗A.
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Classical Least Squares13

Least Squares Solutions Each of the following
four statements is equivalent to saying that x̂ is
a least squares solution for a possibly inconsistent
linear system Ax = b.

• ‖Ax̂− b‖ = min
x∈Rn

‖Ax− b‖2

• Ax̂ = Pim(A)b.

• A>Ax̂ = A>b
(A∗Ax̂ = A∗b where A ∈ Matm×n(C)).

• x̂ ∈ A?b + ker(A)
(A?b is the minimal 2-norm LSS).

Caution! These are valuable theoretical charac-
terizations, but none is recommended for floating-
point computation. Directly solving second of third
from above or explicitly computing A? can be in-
efficient and numerically unstable.

11. Let P2 denote a vector space of all polynomial
of degree ≤ 2, P2 = {ax2 + bx+ c | a, b, c ∈ R}.

(a) Check is it
〈p, q〉 = p(1)q(1) + 2p(0)q(0) + p(−1)q(−1)
inner product for P2.

(b) For subspace L ⊆ P2 generated by p1(x) = 1
and p2(x) = x find an orthogonal complement.

(c) Find the orthogonal projection of
p(x) = −2x2 + x+ 2 on L.

12. In inner product space R4, with standard
inner product, let M denote subspace spanned by
vectors (2, 1, 0, 0)> and (1, 1, 1, 1)>. Find a basis for
orthogonal complement of M and find the
orthogonal projection of a = (3,−4, 5,−5)> onto
M.

13. Let M = span{a, b} denote subspace of inner
product space Rn (with standard inner product)
spaned by vectors a = (0, 1, 2, ..., n− 1)> and
b = (1, 1, 1, ..., 1)>. Find orthogonal complement
M⊥ and find the orthogonal projection of z onto
M where

z =

(
1

2
n(3− n),

1

2
n(n− 1), 0, 0, ..., 0

)>
∈ Rn.

14. Find the orthogonal projection of
x = (−12,−13, 5, 2)> onto M if we have that

M = span




1
−2
2
−3

 ,


2
−3
2
4


 ⊆ R4

(with respect to standard inner product).

15. In inner product space
P3 = {at3 + bt2 + ct+ d | a, b, c, d ∈ R} of all
polynomials of degree ≤ 3 with an inner product

〈p, q〉 =

ˆ 1

−1
p(t)q(t) dt

let M = span{t, 1 + t} be a given subspace. Find
the orthogonal projection of
r(t) = −5t3 − 12t2 + 6t+ 6 onto M.

16. Space L is defined as set of solutions for the
following system

2x1 + x2 + x3 + 3x4 = 0

3x1 + 2x2 + 2x3 + x4 = 0

x1 + 2x2 + 2x3 − 9x4 = 0 .

Find the orthogonal projection of
x = (7,−4,−1, 2)> onto L in R4.

13The following problem arises in almost all areas where mathematics is applied. At discrete points ti (often points in time),
observations bi of some phenomenon are made, and the results are recorded as a set of ordered pairs

D = {(t1, b1), (t2, b2), ..., (tm, bm)}.

On the basis of these observations, the problem is to make estimations or predictions at points (times) t̂ that are between or
beyond the observation points ti. A standard approach is to find the equation of a curve y = f(t) that closely fits the points in
D so that the phenomenon can be estimated at any nonobservation point t̂ with the value ŷ = f(t̂).
mm General Least Squares Problem is the following. For A ∈ Matm×n(R) and b ∈ Rm, let ε = ε(x) = Ax−b. The general
least squares problem is to find a vector x that minimizes the quantity

m∑
i=1

ε2i = ε>ε = (Ax− b)>(Ax− b).

Any vector that provides a minimum value for this expression is called a least squares solution.

• The set of all least squares solutions is precisely the set of solutions to the system of normal equations A>Ax = A>b.

• There is a unique least squares solution if and only if rank(A) = n, in which case it is given by x = (A>A)−1A>b.

• If Ax = b is consistent, then the solution set for Ax = b is the same as the set of least squares solutions.
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